
ELECTRICIDAD BÁSICA
Las propiedades eléctricas de ciertos materiales ya eran conocidas por civilizaciones antiguas. En el año 600 AC, Tales de Mileto había comprobado que si se frotaba el ámbar, éste atraía hacia sí a objetos más livianos. Se creía que la electricidad residía en el objeto frotado. De ahí que el término "electricidad" provenga del vocablo griego "elektron", que significa ámbar.
En la época del renacimiento comenzaron los primeros estudios metodológicos, en los cuales la electricidad estuvo íntimamente relacionada con el magnetismo. El inglés William Gilbert comprobó que algunas sustancias se comportaban como el ámbar, y cuando eran frotadas atraían objetos livianos, mientras que otras no ejercían ninguna atracción. A las primeras, entre las que ubicó el vidrio, el azufre y la resina, las llamó "eléctricas", mientras que a las otras, como el cobre o la plata, "aneléctricas".
Benjamín Franklin fue quien postuló que la electricidad era un fluido y calificó a las sustancias en eléctricamente positivas y negativas de acuerdo con el exceso o defecto de ese fluido. Franklin confirmó también que el rayo era efecto de la conducción eléctrica, a través de un célebre experimento, en el cual la chispa bajaba desde una cometa remontada a gran altura hasta una llave que él tenía en la mano.
Hacia mediados del siglo XVIII se estableció la distinción entre materiales aislantes y conductores. Los aislantes eran aquellos a los que Gilbert había considerado "eléctricos", en tanto que los conductores eran los "aneléctricos". Esto permitió que se construyera el primer almacenador rudimentario: estaba formado por dos placas conductoras que tenían una lámina aislante entre ellas. Fue conocido como botella de Leyden, por la ciudad en que se lo inventó.
A principios del siglo XIX, el conde Alessandro Volta construyó una pila galvánica. Colocó capas de cinc, papel y cobre, y descubrió que si se unía la base de cinc con la última capa de cobre, el resultado era una corriente eléctrica que fluía por el hilo de unión. Este sencillo aparato fue el prototipo de las pilas eléctricas, de los acumuladores y de toda corriente eléctrica producida hasta la aparición de la dínamo. Mientras tanto, Georg Simon Ohm sentó las bases del estudio de la circulación de las cargas eléctricas en el interior de materias conductoras.
En 1819, Hans Oersted descubrió que una aguja magnética colgada de un hilo se apartaba de su posición inicial cuando pasaba próxima a ella una corriente eléctrica y postuló que las corrientes eléctricas producían un efecto magnético. De esta simple observación salió la tecnología del telégrafo eléctrico. Sobre esta base, André Ampère dedujo que las corrientes eléctricas debían comportarse del mismo modo que los imanes.
Esto llevó a Michael Faraday a suponer que una corriente que circulara cerca de un circuito induciría otra corriente en él. El resultado de su experimento fue que esto sólo sucedía al comenzar y cesar de fluir la corriente en el primer circuito. Sustituyó la corriente por un imán y encontró que su movimiento en la proximidad del circuito inducía en éste una corriente. De este modo pudo comprobar que el trabajo mecánico empleado en mover un imán podía transformarse en corriente eléctrica. Los experimentos de Faraday fueron expresados matemáticamente por James Maxwell, quien en 1873 presentó sus ecuaciones, que unificaban la descripción de los comportamientos eléctricos y magnéticos, y su desplazamiento, a través del espacio en forma de ondas.
En 1878 Thomas Alva Edison comenzó los experimentos que terminarían, un año más tarde, con la invención de la lámpara eléctrica, que universalizaría el uso de la electricidad.
HISTORIA DE LA ELECTRICIDAD
¿QUÉ ES LA ELECTRICIDAD?
La electricidad: Es una forma invisible de energía que produce como resultado la existencia de unas diminutas partículas llamadas ELECTRONES LIBRES en los átomos de ciertos materiales o sustancias. Estas partículas, al desplazarse a través de la materia, constituyen lo que denominamos una corriente eléctrica.
CORRIENTE ELÉCTRICA
De forma general, la corriente eléctrica es el flujo neto de carga eléctrica que circula de forma ordenada por un medio material conductor. Dicho medio material puede ser sólido, líquido o gaseoso y las cargas son transportadas por el movimiento de electrones o iones. Mas concretamente:
-
En los sólidos se mueven los electrones.
-
En los líquidos los iones.
-
Y en los gases, los iones o electrones.
Aunque esto es así, el caso más general de corriente eléctrica es el que se produce por el movimiento de los electrones dentro de un conductor, así que suele reservarse este término para este caso en concreto.
La corriente eléctrica es el flujo de electrones entre dos puntos de un conductor que se encuentran a distinto potencial eléctrico.
Tal y como estudiamos en el apartado del movimiento de cargas en el seno de un campo eléctrico, los eléctrones se mueven desde zonas de menor potencial eléctrico a mayor potencial eléctrico. A medida que los electrones se desplazan, el potencial en ambas zonas tiende a igualarse y poco a poco el movimiento de los electrones se detiene. Por esta razón, si deseamos mantener una corriente eléctrica constante es necesario hacer uso de un dispositivo que permita una diferencia de potencial o tensión constante denominado generador de corriente.
Tipos de corriente eléctrica
Dependiendo de la temporalidad del sentido de la corriente eléctrica podemos distinguir dos tipos:
-
Corriente contínua (C.C.). El flujo de eléctrones se produce siempre en el mismo sentido.
-
Corriente alterna (C.A.). El sentido de circulación de los electrones cambia de forma periódica.
A lo largo de este tema nos centraremos únicamente en la corriente continua.
Efectos de la Corriente Eléctrica
De forma general, la corriente eléctrica produce tres tipos de efectos:
-
Efectos caloríficos. Cuando circula una corriente eléctrica por un conductor, este aumenta su temperatura. Este efecto es utilizado en estufas, hornillos, etc.
-
Efectos químicos. Si la corriente eléctrica circula por un conductor iónico, dicha corriente es capaz de producir un cambio químico en él. Este efecto es utilizado en la electrólisis.
-
Efectos magnéticos. El paso de la corriente eléctrica a través de un conductor crea un campo magnético similar al que produce un imán. Este efecto es el fundamento de motores eléctricos, dispositivos de televisión, radio, amperímetros, voltímetros, etc.
Si sabemos que la corriente eléctrica es el flujo de carga entre dos puntos de un material conductor, es lógico que nos podamos preguntar... ¿ y cómo de rápido se desplazan dichas cargas?. Para responder a esta pregunta, la Física establece una nueva magnitud que determina la rapidez con la que la carga fluye a través de un conductor. Dicha magnitud recibe el nombre de intensidad de corriente eléctrica o simplemente intensidad de corriente.
La intensidad de corriente (I) que circula por un conductor es la cantidad de carga (q) que atraviesa cierta sección de dicho conductor por unidad de tiempo (t).
I=qt
​
Unidad de Intensidad de Corriente
​
La intensidad de corriente en el S.I. es el amperio (A), en honor del físico francés André-Marie Ampère (1775-1836). De esta forma un amperio es la intensidad de corriente que se produce cuando por la sección de un conductor circula una carga de un culombio cada segundo.
1 amperio = 1 culombio1 segundo
Al igual que el culombio, el amperio se trata de una unidad muy grande, por lo que es común utilizarsubmúltiplos de esta:
-
miliamperio. 1 mA = 1·10-3 A
-
microamperio. 1 µA = 1·10-6 A
-
nanoamperio. 1 nA=1·10-9 A
Para medirla se utiliza un instrumento denominado amperímetro.
​
Ejemplo
Si la intensidad de corriente que circula a través de la sección de un conductor es 30 mA, ¿Cuanta carga habrá atravesado dicha sección durante 2 minutos?. ¿Cuántos electrones habrán circulado?
(datos: qe=1.6·10-19 C)
Solución
Datos
I = 30 mA = 30 · 10-3 A
t = 2 min = 2 · 60 s = 120 s
Resolución
Aplicando la definición de intensidad de corriente:
I=qt⇒q=I⋅t = 30⋅10−3 A⋅ 120 s ⇒q= 3.6 C
Si la carga total que circula es q= 3.6 C, y la carga de un electrón es qe=1.6·10-19 C, entonces el número de electrones ne que habrán circulado es:
ne=qqe=3.6 C1.6⋅10−19 C ⇒ne=2.25⋅1019 electrones
El voltaje, tensión o diferencia de potencial es la presión que ejerce una fuente de suministro de energía eléctrica o fuerza electromotriz (FEM) sobre las cargas eléctricas o electrones en un circuito eléctrico cerrado, para que se establezca el flujo de una corriente eléctrica.
A mayor diferencia de potencial o presión que ejerza una fuente de FEM sobre las cargas eléctricas o electrones contenidos en un conductor, mayor será el voltaje o tensión existente en el circuito al que corresponda ese conductor.
TENSIÓN ELÉCTRICA

A la izquierda podemos apreciar la estructura completa de un átomo de cobre (Cu) en estado "neutro",<con un solo electrón girando en su última órbita y a la derecha un "ión" cobre, después que el átomo ha<perdido el único electrón que posee en su órbita más externa. Debido a que en esas condiciones la<carga positiva de los protones supera a las cargas negativas de los e lectrones que aún continúan<girando en el resto de las órbitas, el ión se denomina en este caso "catión", por tener carga positiva.<
En otras palabras, el voltaje, tensión o diferencia de potencial es el impulso que necesita una carga eléctrica para que pueda fluir por el conductor de un circuito eléctrico cerrado. Este movimiento de las cargas eléctricas por el circuito se establece a partir del polo negativo de la fuente de FEM hasta el polo positivo de la propia fuente.
Las cargas eléctricas en un circuito cerrado fluyen del polo negativo al polo positivo de la propia fuente<de fuerza electromotriz.
La diferencia de potencial entre dos puntos de una fuente de FEM se manifiesta como la acumulación de< cargas eléctricas negativas (iones negativos o aniones), con exceso de electrones en el polo negativo (–)< y la acumulación de cargas eléctricas positivas (iones positivos o cationes), con defecto de electrones< en el polo positivo (+) de la propia fuente de FEM.










